-->

Memahami Fungsi Trigonometri

February 25, 2022

Memahami Fungsi Trigonometri

 


Fungsi trigonometri merupakan suatu fungsi yang grafiknya berulang secara terus menerus dalam periode tertentu. Fungsi dari periode itu sendiri merupakan suatu jarak antara dua puncak/lembah atau jarak antara awal puncak dan akhir lembah. Selain itu, terdapat amplitudo yang merupakan setengah dari selisih nilai maksimum dan minimum dari suatu fungsi. Rumus amplitudo sebagai berikut:

amplitudo

Fungsi trigonometri sederhana meliputi fungsi sinus, fungsi cosinus dan fungsi tangen. Masing-masing fungsi tersebut dijelaskan dalam bentuk grafik baku fungsi trigonometri seperti berikut:

  • Grafik Fungsi Sinus, y = sin x

Nilai dari sinus adalah -1 ≤ sin (x) ≤ 1

fungsi sinus
 
  • Grafik Fungsi Cosinus, y = cos x
Nilai dari cosinus adalah -1 ≤ cos (x) ≤ 1
 
fungsi cosinus
  • Grafik Fungsi Tangen, y = tan x
Grafik tangen ini tidak mempunyai nilai maksimum.
fungsi tangen
Selain itu terdapat grafik tidak baku pada fungsi trigonometri yang lebih kompleks. Bentuk fungsinya adalah:
fungsi tidak baku
 

Fungsi trigonometri memiliki nilai minimum dan maksimum, cara menentukannya dapat menggunakan metode grafik dan melalui rumus. Metode grafik dengan cara menggambarkan grafiknya, titik puncak pada bukit adalah nilai maksimum sedangkan titik terendah pada lembah adalah nilai minimum. Selain dengan grafik, nilai maksimum dan nilai minimum dapat ditentukan dengan rumus sebagai berikut:

nilai minimum dan maksimum

1. Melukis grafik fungsi sinus menggunakan tabel

Adapun langkah-langkahnya adalah sebagai berikut.

a. Gunakan nilai perbandingan trigonometri untuk sudut istimewa dengan sudut relasi sebagai x.

b. Melengkapi nilai pada tabel, lalu tulis pasangan koordinat titik-titiknya dalam radian atau derajat.

c. Lukis titik tersebut dalam koordinat kartesius yang sesuai.

d. Lukis kurva melalui titik-titiknya.

2. Melukis grafik fungsi kosinus menggunakan tabel

Sama seperti grafik fungsi sinus, untuk kosinus kamu bisa menentukan terlebih dahulu nilai kosinus sudut-sudut istimewanya.

Dengan demikian, diperoleh grafik berikut ini.

3. Melukis grafik fungsi tangen menggunakan lingkaran satuan

Jari-jari lingkaran satuan yang diperpanjang sampai memotong sumbu-y, akan menghasilkan gambar berikut.

Dari gambar di atas, kamu bisa mendapatkan beberapa nilai tangen berikut.

Nilai di atas menunjukkan bahwa nilai tangennya adalah panjang ruas garis dari titik O sampai ke titik potong jari-jari yang terkait sudut, misalnya sudut x. Untuk melukis grafik fungsi tangen, kamu bisa melalui titik potongnya, dengan ruas atas bertanda positif dan ruas bawah bertanda negatif.

Grafik Fungsi Trigonometri

Secara umum, grafik fungsi trigonometri dibagi menjadi tiga, yaitu sebagai berikut.

1. Grafik fungsi sinus (y = a sin bx, x ∈ [0o, 360o])

Grafik fungsi sinus, y = a sin bxx  [0o, 360o] memiliki bentuk gelombang bergerak yang teratur seiring pergerakan x. Perhatikan gambar berikut.

Berdasarkan grafik di atas, diperoleh sifat-sifat berikut.

  1. Simpangan maksimum gelombang atau yang biasa disebut amplitudo adalah 1. Simpangan gelombang adalah jarak dari fungsi x ke puncak gelombang.
  2. Gelombang memiliki periode satu putaran penuh.
  3. Grafik y = sin x memiliki nilai ymaks = 1 dan ymin = -1.
  4. Titik maksimum gelombang adalah adalah (90o, 1) dan titik minimumnya (270o, -1).

Jika persamaan fungsi trigonometrinya diubah menjadi y = sin x dengan a = 2, diperoleh grafik berikut.

Perubahan nilai a mengakibatkan perubahan amplitudo gelombang. Nah, jika persamaan fungsinya diubah menjadi y = sin bx dengan b = 2, grafiknya akan menjadi seperti berikut.

Artinya, perubahan nilai b mempengaruhi jumlah gelombang yang terbentuk. Pada grafik fungsi y = sin 2x terbentuk 2 buah gelombang.

2. Grafik fungsi kosinus (y = cos 2xx  [0o, 360o])

Pada dasarnya, grafik fungsi kosinus sama dengan grafik fungsi sinus. Hal yang membedakan adalah grafik fungsi sinus dimulai dari y = 0, sedangkan grafik fungsi kosinus dimulai dari y = 1. Perhatikan grafik berikut.

Jika persamaan fungsinya diubah menjadi y = cos 2x, grafiknya menjadi seperti berikut.

Grafik di atas menujukkan adanya dua buah gelombang yang bergerak dari y = 1.

3. Grafik fungsi tangen (y = tan xx  [0o, 360o])

Adapun ketentuan yang berlaku pada fungsi tangen adalah sebagai berikut.

  • Saat x -> 90o dan x -> 270o (dari kanan), nilai y = tan x menuju tak terhingga.
  • Saat x -> 90o dan x -> 270o (dari kiri), nilai y = tan x menuju negatif tak terhingga.

Berikut ini contoh grafiknya.

Jika fungsi tangen diubah menjadi y = tan 2x, x  [0o, 360o] grafiknya menjadi seperti berikut.

Untuk mengasah pemahamanmu tentang grafik fungsi trigonometri, simak contoh soal berikut.

Contoh Soal 1

Perhatikan grafik fungsi berikut.

Grafik fungsi tersebut merupakan grafik fungsi jenis apa?

Pembahasan:

Jika diperhatikan, grafik tersebut dimulai dari titik (0,1) dan mempunyai periode satu putaran 0 ≤ x ≤ 2π.

Dengan demikian, grafik fungsi tersebut adalah grafik fungsi cos, yaitu y = cos x. Untuk meyakinkan, coba lihat salah satu titiknya.

Jadi, grafik fungsi tersebut merupakan grafik fungsi = cos x untuk 0 ≤ x ≤ 2π.

Contoh Soal 2

Lukislah grafik fungsi y = 2 cos 2xx  [0o, 360o]

Pembahasan:

Untuk menentukan bentuk grafiknya, gunakan tabel trigonometri sudut istimewa.

Dengan demikian, grafik fungsi y = 2 cos 2xx  [0o, 360o] adalah sebagai berikut.

Contoh Soal 3

Hitunglah nilai maksimum dan minimum fungsi y = cos (x – 30), x  [0o, 360o]. Kemudian, lukislah grafik fungsinya.

Pembahasan:

Berdasarkan tabel trigonometri untuk sudut istimewa, diperoleh:

Berdasarkan tabel di atas, nilai maksimum dari fungsi y = cos (x – 30), x  [0o, 360o] adalah 1 dan nilai minimumnya adalah –1. Untuk lebih jelasnya, simak grafik fungsi berikut.



Comments

Post a Comment
Romahkuhijau

Semua Masalah Pasti Ada Jalan Keluarnya

Featured Post

Followers

Widget Atas Posting

Widget HTML Produk

Widget HTML Jasa

Postingan Populer

Pengertian, Kelebihan, Fungsi dan Manfaat Dropbox

Pada saat ini, media penyimpanan data digital yang tampak secara fisik atau konvensional tak lagi begitu menarik. Media-media seperti flashdisk, memori, harddisk, cd dan sebagainya tak lagi mendominasi.  Dropbox adalah salah satu layanan penyimpanan cloud paling populer. Dropbox tak hanya diakses melalui browser PC atau ponsel, kini Dropbox tersedia dalam versi aplikasi. Fungsi dan kegunaan aplikasi Dropbox ini tentunya memudahkan para penggunanya. Fungsi aplikasi Dropbox menyediakan penyimpanan untuk semua file di ponselmu. Dengan Dropbox kamu tak perlu khawatir kehabisan ruang penyimpanan ponsel. Jika kamu membutuhkan akses ke file terpentingmu, bahkan ketika sedang bepergian, Dropbox bisa sangat membantu. Dibanding dengan media konvensional yang bisa saja rusak atau hilang, media berbasis cloud dinilai jauh lebih aman  bisa diakses dari mana saja dan kapan saja. Asal ada koneksi internet, kita bisa berbagi data digital di media cloud dengan sangat mudah.   Saat in...

Evomagz (Green) Blogger Template V6.3

Ketika membuat sebuah blog yang professional memang harus memperhatikan sebuah tema atau template, agar pembaca atau pengunjung terasa nyaman pada saat membaca sebuah artikel yang sudah di publish pada blog yang telah dibuat. Untuk memilih template yang memiliki tampilan yang elegan, responsive, dan fast loading memang agak susah untuk dicari. Bahkan template premium pun ada yang loadingnya cukup berat, sehingga memakan waktu yang cukup lama pada saat membuka situs atau blog yang telah kita buat. Evomagz template blogger premium dari Mas Sugeng ini cukup legend dan terkenal hingga sekarang. Buat para blogger jaman old pasti sudah mengenal template premium yang satu ini, ini merupakan seri lama buatan mas sugeng yang masih mendapatkan update hingga tahun 2022.  Evomagz ini angkatan template Fastest magz yang dulunya sangat banyak dicari dan dipakai para blogger. Nah menariknnya Evomagz yang sudah rilis sejak dari tahun 2014 ini mendapatkan update terbaru pada tahun awal tahun 2022 y...